Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,3'-Bis(2-thienylmethyl)-4,4'-(butane-1,4-diyl)-bis(4,5-dihydro-1H-1,2,4-triazol-5-one)

Yasemin Ünver, ${ }^{\text {a }}$ Reşat Ustabas, ${ }^{\text {b }}$ Ufuk Çoruh, ${ }^{\text {c }}$ Kemal Sancak ${ }^{\text {a }}$ and Ezequiel M. Vázquez-López ${ }^{\mathbf{d} *}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, 61080 Trabzon, Turkey, ${ }^{\mathbf{b}}$ Department of Physics, Graduate School of Natural and Applied Sciences, Ondokuz Mayıs University, Kurupelit 55139, Samsun, Turkey, ${ }^{\text {c }}$ Department of Computer Education and Instructional Technology, Faculty of Education, Ondokuz Mayıs University, 55200 Atakum-Samsun, Turkey, and departamento de Química Inorgánica, Facultade de Ciencias-Química, Universidade de Vigo, 36200 Vigo, Galicia, Spain

Correspondence e-mail: rustabas@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.102$
Data-to-parameter ratio $=17.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$, has a centre of symmetry. The thiophene ring makes an angle of 70.58 (6) ${ }^{\circ}$ with the triazole ring. Molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional network.

Comment

1,2,4-Triazole compounds possess important pharmacological properties such as antifungal and antiviral activities. Examples of such compounds bearing the 1,2,4-triazole residue are fluconazole (Tsukuda et al., 1998), the powerful azole antifungal agent, and the potent antiviral N-nucleoside ribavirin (Witkoaski et al., 1972). Furthermore, various 1,2,4-triazole derivatives have been reported as showing fungicidal (Heubach et al., 1979), antimicrobial (Griffin \& Mannion, 1986) and antitumor activity (Hanna et al., 1988), as well as having applications as anticonvulsants (Husain \& Amir, 1986), antidepressants (Chiu \& Huskey, 1998) and plant growth regulator anticoagulants (Eliott et al., 1986). In the present paper, we report the structure of the title compound, (I).

(I)

In (I), the molecule has a centre of symmetry at the midpoint of the central $\mathrm{C}-\mathrm{C}$ bond (Fig. 1). The 1,2,4-triazole ring is planar. The $\mathrm{C} 6-\mathrm{N} 3$ and $\mathrm{C} 7-\mathrm{N} 3$ bond distances are longer than C7-N2 (Table 1), because atom N3 has an alkyl substituent. The $\mathrm{N} 1-\mathrm{N} 2$ bond length is close to that reported for a similar compound [1.3823 (17) Aं; Ocak Ískeleli et al., 2005]. The dihedral angle between the thiophene (S1/C1-C4) and triazole ($\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7 / \mathrm{N} 3 / \mathrm{C} 6$) rings is 70.58 (6) ${ }^{\circ}$. The molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming a three-dimensional network.

Experimental

To a solution of N^{\prime}-(1-ethoxy-2-thiophen-2-yl-ethylidene)hydrazine carboxylic acid ethyl ester ($5.12 \mathrm{~g}, 0.02 \mathrm{~mol}$) in water (50 ml), 1,4diaminobutane ($0.88 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added and refluxed for 4 h . The resulting precipitate, (I), was filtered off and washed with water. Crystals of (I) were grown from ethanol/water ($1: 1 \mathrm{v} / \mathrm{v}$) solution by
slow evaporation for 7 d at room temperature (yield 69.7%, m.p. $528-$ $529 \mathrm{~K})$. IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): $3188(\mathrm{NH}), 1701(\mathrm{C}=\mathrm{O}), 1577(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.21\left(b s, 2 \mathrm{CH}_{2}\right), 3.40\left(b s, 2 \mathrm{NCH}_{2}\right), 4.13(4 \mathrm{H}$, $2 \mathrm{CH}_{2}$, thiophene), $6.93-7.42(m, 6 \mathrm{H}, 6 \mathrm{CH} \mathrm{ABC}$ system, for two thiophene ring), $11.58(2 \mathrm{H}, s, 2 \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 25.21$ $\left(\mathrm{CH}_{2}\right), 26.08$ (thiophene- $\left.\mathrm{CH}_{2}\right), 40.21\left(-\mathrm{NCH}_{2}\right), 126.92,126.49,126.92$ (thiophene CH), 137.56 (thiophene C), 145.59 (triazole C-3), 154.87 (triazole C-5).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$

$$
Z=2
$$

$M_{r}=416.54$
Monoclinic, $P 2_{1} / c$
$a=9.6148$ (15) Å
$b=7.2699$ (11) \AA
$c=13.523$ (2) \AA
$\beta=95.289(3)^{\circ}$
$V=941.2(2) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
2175 independent reflections
1491 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=28.0^{\circ}$
5511 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.102$
$S=0.92$
2175 reflections
127 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0482 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.26 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C7	$1.235(2)$	$\mathrm{N} 3-\mathrm{C} 6$	$1.380(2)$
C8-N3	$1.460(2)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.385(2)$
S1-C1	$1.706(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.388(2)$
S1-C4	$1.723(2)$	$\mathrm{C} 7-\mathrm{N} 2$	$1.348(3)$
C7-N3-C6-N1	$0.3(2)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 1$	$0.8(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.91	$2.737(2)$	161

Symmetry code: (i) $-x+2, y+\frac{1}{2},-z+\frac{3}{2}$.

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level. [Symmetry code: (ii) $2-x, 1-y, 1-z$.]

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Faculty of Education, Ondokuz Mayıs University, Turkey, for supporting this work (under grant No. EF. 107 of the University Research Fund).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chiu, S.-H. L. \& Huskey, S.-E. W. (1998). Drug. Metab. Dispos. 26, 838-847.
Eliott, R., Sunley, R. L. \& Griffin, D. A. (1986). UK Patent Application GB 2 175301.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Griffin, D. A. \& Mannion, S. K. (1986). European Patent Application No. EP 199474.

Hanna, N. B., Dimitrijevich, S. D., Larson, S. B., Robsin, R. K. \& Revankar, G. R. (1988). J. Heterocycl. Chem. 25, 1857-1868.

Heubach, G., Sachse, B. \& Buerstell, H. (1979). Ger. Off. 2, 826-760.
Husain, M. I. \& Amir, M. (1986). J. Indian Chem. Soc. 63, 317-319.
Ocak Ískeleli, N., Çoruh, U., Bekircan, O., Ağar, A., Şaşmaz, S. \& Erdönmez, A. (2005). Acta Cryst. E61, o1659-o1661.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tsukuda, T., Shiratori, Y., Watanabe, M., Ohtsuka, H., Hattori, K., Shirai, M. \& Shimma, N. (1998). Bioorg. Med. Chem. Lett. 8, 1819-1824.
Witkoaski, J. T., Robins, R. K., Sidwell, R. W. \& Simon, L. N. (1972). J. Med. Chem. 15, 1150-1154.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

